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TECHNICAL NOTE 3877

ON STOKES! STREAM FUNCTION IN COMPRESSIBIE

SMATLL~-DISTURBANCE THEORY

By Milton D. Van Dyke
SUMMARY

Stokes?® stream function is studied for subsonic or supersonic flow
past axisymmetric bodies of smell slope. The first-order equation is
found to be nonlinesr. It can be linesrized if one seeks only the formal
order of accuracy of the slender-body approximation. In any case, serious
loss of accuracy results from imposing the condition of tangent flow at
the body on the mass flux rather than on the velocity. In a second
approximetion, neglect of the nonlinearity leads to a false solution even
In the slender-body expansion.

INTRODUCTION

Stokes! stream funection would eppear to offer attractive possibilities
for treating subsonic or supersonic flow past bodies of revolution of
small slope. The condition of tangent flow at the body surface is simpler
for the stream function than for the velocity potential, because a condi-
tion is imposed on the dependent varlable itself rather thsn on its
derivative. Use of the stream function also permits streamlines away
from the body to be determined eassily. For these reasons, various investi-
gators have adopted Stokes! stream function in linesrized theory (refs. 1
to 3).

Another advantage might be anticlpated if one proceeds to caleculate
higher approximations by iteration on the first, and considers practical
shapes having stsgnation points (rather than, say, cusped noses). Then
it has been found that the failure of the first approximstion in the
vieinity of the nose may In some cases be campounded so that the second
approximgtion is incorrect everywhere, and the danger of this is grester
with the velocity potential ¢ than with the stream function V¥. Thus
in the analogous problem of plane flow, straightforward iteration on the
subsonic thin-airfoil solution for a sharp-edged profile (such as a
biconvex section) yields a false second-order result even at mid-chord
if one works with @, but correct results (except very near the edges)
if one uses V¥ (ref. 4). Both methods fail, however, for round edges.
One can then abandon the thin-airfoil approximation, and by using exact
conformal mappings find the proper second approximation for a round-
edged sirfoil (which must still, however, be corrected near the edge,
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where it is not wniformly valid). Thus Hantzsche and Wendt treated the
ellipse and Joukowski section by lsborious computation, using the stream
function (ref. 5). Recently a second-order compressibility rule has been
discovered that reduces any subsonic airfoil problehn to an incompressible
one; and since these difficultles disappéar at zero Mach number, they are
no longer an obstacle in plane flow (ref., 4). They would, however,
regppear if one proceeded to & third approximstion.

For bodies of revolution, these mastters are less thoroughly explored.
The only relevant published solution is that of Schmieden and Kawalki who,
working wlth Stokes! streem function, obtained a second approximation
for subsonlc flow past a slender unyawed.ellipsoild of revolution, and
gave also the ssymptobic expansion for vanishing thickness that may be
termed the second-order slender-body solution (ref. 6). They used con-
formel mapping, so that analogy with Hantzsche and Wendt's treatment of
the ellipse would suggest that their treatment is valid. However, axisym-
metric bodies induce wesker disturbances:then do their plane counterparts,
so that stagnetion points plaey & more dominant role, and questions of
validity are accordingly more delicate.

This is illustrated by the fact that, in contrast to the corresponding
plane case, the second-order slender-~body solution based upon ¢ fails
et a round nose even in incompressible flow. Thus for the parsboloid
whose radius is r = BWX, expansion of the exact incompressible solution
gives to second order near the body f -

; ’ 4
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whereas straightforward iteration on the 'slender-body theory of Heaslet
and Lomex (ref. 7) misses the last term shown sbove. As in the plene
problem for compressible flow, the missed term is an eigensolution
associated with the blunt nose, beilng in fact the slender-body represen-

tation of a point source st the origin, of potential fg 5%(x2 + r2)~1/2,
It induces no radisl velocity on the exig, where the tangency condition
is imposed, and so is overlooked if one vworks with ¢@. It does, however,
induce a mass flux, so that one might hope to catch it by working with

V¥, and this expectation is in fact realized. One might therefore be
encoursged to attack the corresponding cdmpresgible problem using V.

For these reasons, the spplication of Stokes! stream function to
compressgible smell-disturbance theory hag been studied here in some
detail. The results are surprising. Far from offering the expected
advantages, the stream function is found to suffer from grave shortcomings.
The proper first-order equation of motion is actually nonlinear. The
nonlinearlity can be disregesrded in the first approximation if one seeks
only the formal accuracy, as indicated by order estimates, of the
asymptotic slender-body theory; but the numerical accuracy is in any case
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fer inferior to that obtained by using ¢@. In the second approximstion,
neglect of the nonlinearity is disastrous, so that Schmieden and Kawalki's
solution for the ellipsocid is in fsact incorrect.

SMALT.-DISTURBANCE EQUATIONS

The continulty equation for sxisymmetric compressible flow is satis-
fied by introducing Stokes! stream function V¥, according to which the
axial and radial velocity components in cylindrical coordinstes are given

by

(1)

where p 1s the density snd P 1its value in the free stream. Uniform
inviscid flow past & body of small slope is irrotational to at least
third order, and to that approximation the equation of motion is

(c2 - U2)¥xx + (c2 - V2)¥pp - 20V¥ygy - c2 %—{3 =0 (2a)

where the speed of sound c is related to its free-stream velue ¢, and
the flow speed U, by

c? + Zéi (U2 + 73) = ¢ + Zéi U2 (2b)

Consider now perturbations asbout a uniform flow, introducing pertur-
bation quantities (denoted by lower-case symbols) by setting

v = qn<% r2 + W)
U = Up(l + u) (3)
V = Ugv

In terms of these perturbation quantities the equation of motion (2)
becomes

[l-lé}-M2(2u+u2+v2)}<ﬂ!ﬂfllrrr-%>

= MB[(1 + 2u + wBpy + V(L + ¥pp) + 2(1 + W)y ]
{4y
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The flow is isentropic to at least second order, and to that approxi-
mation the density ratio sppesring in equations (1) is given by

O A TR L

Expanding the right-hand side for small u and v, and combining with
equations (1) end (3) leeds to the following expressions for the pertur-
bation velocity components (referred to free-gtream speed) in terms of
first derivatives of the perturbation stream function:

[ @A (D@ 2
Faedwe)(B) ] . (62)

V=-f§-—%1§21—p’1-3£': (q")] (6b)
where
B2 = 1 - M2
2 B?

Order of Perturbation Quantities

It is well known that the streamwise velocity perturbation induced
by & body of revolution is, except near porners, of smaller order than
the radisl velocity. For & body of thiclmess ratio T +the radial com- o
ponent v 1s of order T as indicated by the tangency condition, but
u is only of order T2in T. It follows: that the quantities (Yx/r)
and (V¥x/r)® bracketed in the first term bf equation (6a) are O(T2ln T)
end O(T2). Both are therefore of first prder (even though one is linear
and the other quadratic in perturbation quantities) because for slender
bodies, terms of different order differ by factors of 2. Likewise, the
terms in the second bracket are O(T4, 74In T, T4In®T) and hence all of
second order. Near corners u is O(T) because the flow is locally plane,
and then the linear terms in equations (6) are of first order, the quad-
ratic terms of second order, and the cubic and quartic terms are simply
negligible. B

The orders of VY and its derivatives near the body can be determined
from equations (6) together with the facts that r is O(T) and that
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integraetion or differentiation with respect to x dJdoes not affect the
order of a term. Aside from powers of 1In T, which are 0o(1) for all
practical purposes, the result is

u = 0(72) ¥ = 0(r2) Vxx = 0(72)
v=o(r) E_o(r) e =o(r) (8)
%? = 0(12) Yrr = 0(12)

First-order and Iinearized Eguations

Substituting the expressions (6) for u and v into equation (4) and
retaining only leading terms (of order T2) ylelds the first-order equation
of motion:

(1 - M®Wx + Vrr - —1.— MZC" ) (9)

An unexpected result is that the first-order equation is nonlinear.

A1l previous investigators (refs. 1 to 3, and 6) bave based their
Tirst epproximetion upon the linearized equation obtained by dropping the
right-hand side of equation (9):

(1 = M2 )y + Vpp - %? =0 (20)

and have also linearized the commection between ¥ and u by omitting the
quadratic first-order term in equation (6a). This procedure actuslly
yields results correct to first order, as can be verified by introducing
a modified perturbation stream function ¥ according to

¥ =T --% M2Y2in r (11)

The order estimates of equations (8) apply to ¥ as well as V¥. Hence
substitution shows that the first-order problem for V¥ implies, to first
order, the linearized problem for V¥. However, the relation (6a) con-
necting u snd ¥ must be linearized as well as the equation of motion
(10); to linearize either slone would lead to incorrect results. This
suggests that the linearizaestion may be somewhat of a coincidence, which
cannot be relied upon to have its counterpart in higher approximations.

It should be noted that, aside from enormous mathematical simplifi-
cation, linearization leads to a problem satisfying the similitude of
Gothert's rule (ref. 8), which is not true of the first-order problem
based upon equation (9).
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Two theories that are asymptotically of equel order mey differ con-
sidersbly in numerical accuracy. Whether the nonlinear first-order
equetion or the linearized equation yields greater accuracy, and how they
compare with the more conventional treatment using @ are questions to
be considered in s subsequent example. : --

Second~order Equstion

Retaining terms of O(t4) in equation (&) yields the second-order
equation of motion which, written in a form sulted to iteration on the
first-order solution, is i

{—é(n + l) = Vr - 2 EE Y +

2
(L= W 0oe + e = - () =P n(‘“)wm (&) v +
2n<?x>2Wr n<? >

Here the right-hand side has been simplified by using the fact that the
lef't~hand side ie'to be equated to zero in the first spproximastion.

—
(12)

The counterpart of linearizing the first-order equation 1s the
retention here only of quedratic terms, which yields, in a form suited
to iteration on the linearized solution : - --

(1 - M®Wxx + ¥rr - %g = [E(n + l) + ka -2 Wkr ¥ <% ) }

(13)

end this 1s the basis of Schmieden and Kewalkl's second-order solution
for subsonic flow past an ellipsoid of revolution (ref. 6). Corre-
spondingly, they retain only quadratic terms in the expressions (6) for
velocity components.

FIRST APPROXTMATIONS FOR CONE IN SUPERSONIC FLOW

It happens that the first-order equation (9), though nonlinesr, can
be integrated in closed form for the standard exesmple of supersonic flow
past an unyawed circuler cone. This example can, therefore, serve as a
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test case for assessing the relstive sccuracies of the various possible
first approximations. The proper choice of the relation between pertur-
bation velocities and pressure coefficient is a possibly controversial
question that will be avolded by restricting attention to the streamwise
veloclty increment on the cone.

First~order Solution

For flow past & cone, the stream function is homogeneous of order 2
in the space coordinates, so that

V(x,r) = r2£(t) (1he)
where
Br
t = 2=
x (1hb)
B2 = M2 - 1

Hence the first-order equation of motion (9) becomes the nonlinear
equation for f£(t):

g2 2
(1 - t2)F" + ii—t £1 = ‘;—E 212 (15)

This is Bernculli'!s eguation for <f£!', which is a linear eguation for
1/ft, with solution

2 N1-t2 (16)

vy _B
£rt) =% £3(k +sech +t)

The integration can be carried -out in terms of exponentisl integrals.
Imposing the condition thet the disturbances vanish at the Mach cone,
£(1) = 0, leads to

2 -1 - .__ - —
£(t) = % 3_2 {Em 1+ %—’i - e ZK[Ei(ak + 2 sech Tt) - Ei(zk)] -

eZk[Ei(-ak - 2 sech Yg) - Ei(—?.k):'} (172)
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where
[o0]

-8 —
Bi(-x) = - Eg— ds , Bi(x). =

X

s
[&d, x>0 (17b)
(o0}

First-order Solution With Tangency on Mass Flux

The condition of tangent flow at the surface can now be imposed on
elther the mass flux or the velocity. In the full theory these sre of
course eguivalent, but in the spproximaie theory they yield results dif-
fering in higher-order terms. Zero masé flux through the surface is
assured by requiring the stream function to vanish there. For a cone of
semivertex angle € this ylelds the transcendental equation

£(Be) = ~iF (17e)

for determining k. Then the surface incrément in streamwise velocity
is given by L T

=§I—S—=—i- 4 l_ME 2!2
us i [ 1 + tf b 558 (t3fr*) B (174)

The transcendental equation (17c) has been solved numericaelly for s
cone of 10° semivertex angle. The resulting variastion of u with free-
stream Mach number is compared in sketch (a) with the exact results from
Kopal's table (ref.9). ; '

.85

A curious feature of the solution
is that beyond a certain Mach number
the constant k becomes negative.

_ —— Eq.{I7d) If 'k is slightly negative the factor
(k + sé&¢h™tt) in equation (16) will
venish on the cone 1t = sech(-k) which
lies within the flow field, so that
' .is singuler there. This would
.00 l ! l l mean that the radisl velocity v was
] 2 3 4 5 e¢infinite in the flow field, which is
M intolerable. The solution must
accordingly be regarded as having
Sketeh (a) broken down when k becomes zero.
There is no apparent physical interpretdtion of this limit. It asrises at _
e lower Mach number than the more familiar cutoff of linearized theory at
Be = 1, which corresponds to the free-stream Mach cone's having been forced
down ontc the surface. Thus, for the 10° cone, k vanishes at Be = 0.699
or M = 3.92, as indicated by the cutoff ‘in sketch (a).

Exact
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First-Order Solution With Tangency on v

Instead of requiring the stream function to vanish, one can impose

the tangency condition on the velocity at the surface.

In the approxi-

mation usually adopted in linearized theory, the small increment in
stresmwise velocity is neglected, so that the condition is simply that
v eqgual the slope of the body. For the cone, this determines the

constant k saccording to

’ 2.2
k = _1‘.:.&_6—. - sech—lBe

M2
Then on the surface
.85

ug = - gﬁ [l + 2f(ﬁe) +-% Mzez]

(180)

This is compared in sketeh (b) with “a5

the exact solution for a 10° cone.

The approximate solution is termi-

nated at Be = 1, which occurs at .00
M= 5.76.

(18e)

Sketeh (b)

Comparison With Other Approximations

The linearized stream functlon for a cone has been found by Moore
{(ref. 3) by solving equation (10) and requiring ¥ +to vanish on the
surface. The streamwise velocity increment on the surface is

sech™ 1T

'u_S=

85
where T = Be. Sketeh (c) compares

this result with the exact solution.
Alternstively, one can impose the .90
tangency condition on the veloeity, y, -
which gives (with the approximate T
condition v = € discussed 5
previously)

—e2 sech™IT

.00
=

Ug =

-¢2
Jl-Tz—Tzsech'lT

(19)

Sketch (e)

p -
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The comparison with exact theory is :
given in sketch (4). .

Instead of working with the stream
function, one cen use the perturbation
velocity potentisl ¢, for which the
linearized or first-order equation is

wol—dl—L 11— e e+ FE =0

Sketch (&)

Then the epproximste tangency condition v = € leads sgain to equa~

tion (20). Alternatively, one can require zero mass flux through the
surface. This condition has been adopted for methematical simplicity by
Parker in his analysis of minimum drag bodies (ref. 10), using & cylindri-
cal control surface. The result is then equation (19). Thus 1t appears
immaterial whether one uses the linearized equation of motion for @

or ¥; the result depends only upon the fdrm of tangency condition adopted.

Tt can be verified that each of the aspproximstions considered so far
has the same asymptotic form for smell T = Be, namely the slender-body
solution, according to which P

ug = ~€2in T + 0{e*1n3T) (21)

This approximstion is compared with the exact solution for a 10° cone in
figure 1, together with all the other first approximations discussed
previously. The various spproximetions. differ only in the subsequent

terms of the asymptotic series, which are not correct in any case because
they are affected by the neglected nonlinear terms. Despite occasional
statements to the contrary, however, this ddés not rule out the possibility
that one approximation is consistently bdtter than another.

The most striking result 1s the inaccuracy associated with imposing
the tangency condition on mass flux, whether in the linearized equation
for ¢ or ¥ (eq. (19) and sketch (c)) or the nonlinear first-order
equation for V¥ (eq. (17d) and sketch (a)). The error is never less
thasn twice that in simple slender-~body theory, and rises rapidly with
Mach number.

On the other hand, Imposing the tangency condition on velocity leads “
in every case to resulls more accurate than those of slender-body theory. ¢
Although the nonlinear solution is the most accurate at high Mach numbers
(eq. (18b) and sketch (b)), it falls behind at lower speeds; and in eny
case 1t could not reasonably be extended (to other bodies of revolution.
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There remains the linesrized solution (using either @ or V) with
tangency imposed on v (eq. (20) and sketch (d)) as the most accurate
approximation appliceble to other shapes. Experience has shown that it
consistently yields accuracy of the sort encountered in this example.
Hence it seems unlikely that Stokes! stream function offers any advantages
in first-order compressible flow theory, except possibly for determining
streamlines in subsonic flow, where the insccuracy would probably be no
greater than it is at a Mach number of N2 in supersonic flow.

HIGHER APPRCXTMATIONS

It was suggested in the introduction that the stream function might
have the advantsge in higher spproximations of applying to blunt bodies
for which the velocity potential fails. However, a practical iteration
scheme could probasbly only be based upon the linearized approximation.
The discovery that the true first-order equation of motion is actually
nonlinear casts some doubt upon the validity of such a scheme. This
matter will be studied by considering asgain the special case of a cone,
for which the correct second-order solution is known.

Iteration on Linearized V¥ for Cone

The second approximation for a cone in supersonic flow will be sought
by proceeding in strict analogy with Schmieden and Kawalkit*s treatment of
an ellipsoid in subsonic flow (ref. 6). Thus the slender-body expansion
is introduced only at the last stage, which eliminstes the well-known
difficulty with the distant boundery condition in slender-body theory.

With the previous substitution (14) for the perturbation stream
function, the linearized equation (10) becomes

2
(1 - £2)8," + t%?t— £1 =0 (22)

which is just equation (15) without its nonlineer term. The solution
that vanishes at the Mach cone +t =1 1is

£, = -1 {E - sech"lt> (23a)

2 2

The condition that the full stream function vanish on the cone of semi-
vertex angle € -‘determines the constant A as

T2

A= (23b)
J1-T° - Tsech™ 1T

These are just Moore's results (ref. 3).
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Substituting this solution into the right-hand side of equation (13)
gives as the iterstion equation for the sécond-order increment to £

_s2yem , 37262 o, _ MBAZ sech" t o, 1+t2 (ohe
(1 - 2)8" + S5 1t = T3 E(N + = (2ka)
where
U A i 2 e
N=m =% ‘%‘Mz_l (2k)

The genersl solution vanishing at the Mach cone is

1 JA1-tB -1 M2A2 1-t2 gsech™%
f, = -2 C{~==— - sech 7t )+ - 2 - -

(N +3) + (1 - 2N)(sech"lt)2:l (25a)

At this point it is sppropriate to introduce;the slender-body approxi- _
mation by expanding asymptotically for small t. Then requiring the
stream function to-wvanish on the surface to second order determines the
congtant C ‘as

I"rll

C = M262T2<7,n-§ iy %) - (25b)

The veloclity components are related to the stream function by
equations (6). Schmieden and Kawalki's analysis implies (falsely) that
linear and quadratic terms sre respectively of first and second order,
which means that the stresmwise velocity increment is given by

R SEREET] @

On the surface of the cone, the linearized solutlon for £, gives, in
the slender-body expansion A :

n — %) + .. ] (27a-)

i L

2. .
v .
=X —e[l + Tin % + . . .}

.“.’;-1:=T2{m_+f< g

r
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and the second-order increment f, gives

*2r
T

2

= - é MZe2 + M2e2T2[ 3 - ﬁ)z % =+ N + l} + « o« « {27c)

rol—q
ra

Note the apparent contradiction thet this supposed second-order term
actuslly starts off with a first-order term in €2. That contribution
to u is, however, cancelled by the first-order nonlinear term in
(¥1x/r)?, which is just the coincidence discussed previously that permits
the first-order problem to be linesrized. Thus equation (26) gives as
the supposed second approximstion

' 2
us 21 - @ 2 - 4pepe 2 - Leie 2 en  143MF (28)
Be Be 2 Be 4

This result is unfortunately not entirely correct. Broderick!s
solution of the seme problem, using the velocity potential, gives 6M?/4
in place of 3M2/L in the last term. His solution has been confirmed
by independent analyses, and must be regarded as reliable. That the
discrepancy is in a term proportional to M2 is plausible since the
linearized and nonlinesr first-order problems differ by terms in M=3.

If one imposes the tangency conditlon on velocity rather than mass
flux, the result is different but stlll incorrect. A discrepancy then
appears also in the coefficient of € *1n 2/Be.

Discussion.- The preceding example shows that although the first-
order problem for V¥ can coincidentally be linearized, the second-order
problem cannot be limited to quadratic terms and solved by iteration on
the linearized solution. Three modifications, of successively greater
complexity, suggest themselves as the correct procedure.

The simplest possibility is that the true second approximation can
be found merely by retaining some cubic or quartic terms in the right-hand
side of the iteration equation (13) or in the expressions (6) for velocity
components. This is known to be the case if one works instesd with e,
where the iterastion equation must include a cubic term, and quadratic :
terms appesr in the expression for pressure. However, attempts to isolate -
the proper combination (if it exists) from the many possibilities in the
preceding exsmple have not succeeded. Secondly, it may be that the —
remsinder of the second-order terms would emerge from the next step of
the procedure, involving cubic terms. Thirdly, it might be necessary to
work with the nonlinear iteration equatlon (12), which would introduce -
enormous mathematical difficulties. ’

The problem mentioned in the introduction of second-order subsoniec
flow past a paraboloid has recently been solved by the author in an indi-
rectway, and the solution obtained by using ¥ 1in the preceding fashion



1k | NACA TN 3877

is found sgain to be in error by a term in M®. Since s paraboloid is

a limiting case of an eliipsoid, this confirms the suspicion that
Schmieden and Kawelki's solution (ref. 6) is incorrect in the second-order
terms in MZ2. .

Ames Aeronsutical Leboratory
National Advisory Committee for Aeronautics
Moffett Flield, Calif., Dec. 10, 1956
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Figure 1l.- Various first approximations for surface speed on cone in supersonic flow.
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